TWO PHASE LOAD BALANCED ROUTING USING OSPF
ABSTRACT
The Internet traffic is growing, and its nature changes because of new applications. Multimedia applications require bandwidth reservations that were not needed initially when the file transfers dominated the Internet. P2P applications are making traffic patterns impossible to predict, and the traffic loads generated at nodes need to be routed regardless of the traffic pattern. When the guaranteed node traffic loads are known, bandwidth reservations can be made simple as will be explained in the paper.
The shortest path routing (SPR) protocols used on the Internet today do not maximize the guaranteed node traffic loads, and do not provide scalable and fast bandwidth reservations. Load balancing can improve the network throughput for arbitrary traffic pattern. In this paper we analyze and implement a routing protocol that is based on load balancing and a commonly used shortest path routing protocol, and is, consequently, termed as LB-SPR. LB-SPR is optimized for an arbitrary traffic pattern, i.e. it does not assume a particular traffic matrix. Optimization assumes only the weights assigned to the network nodes according to their estimated demands. It will be shown that the optimized routing achieves the throughputs which are significantly higher than those provided by the currently used SPR protocols, such as OSPF or RIP. Importantly, LB-SPR calculates the guaranteed traffic loads and so allows fast autonomic bandwidth reservations which are the key for the successful support of triple-play applications, including video and audio applications that require high QoS.
An actual modification of the TCP/IP stack that includes LB-SPR is also described. Using the signaling mechanisms of the OSPF protocol, the information needed to perform the routing optimization is automatically distributed among the network nodes whenever the network topology changes. The LB-SPR implementation is validated on a sample network using a popular virtualization tool - Xen.